Maximal Independent Sets and Maximal Matchings in Series-Parallel and Related Graph Classes
نویسندگان
چکیده
منابع مشابه
Global Forcing Number for Maximal Matchings under Graph Operations
Let $S= \{e_1,\,e_2, \ldots,\,e_m\}$ be an ordered subset of edges of a connected graph $G$. The edge $S$-representation of an edge set $M\subseteq E(G)$ with respect to $S$ is the vector $r_e(M|S) = (d_1,\,d_2,\ldots,\,d_m)$, where $d_i=1$ if $e_i\in M$ and $d_i=0$ otherwise, for each $i\in\{1,\ldots , k\}$. We say $S$ is a global forcing set for maximal matchings of $G$ if $...
متن کاملMAXIMAL INDEPENDENT SETS FOR THE PIXEL EXPANSION OF GRAPH ACCESS STRUCTURE
Given a graph G, a visual cryptography scheme based on the graph G is a method to distribute a secret image among the vertices of G, the participants, so that a subset of participants can recover the secret image if they contain an edge of G, by stacking their shares, otherwise they can obtain no information regarding the secret image. In this paper we apply maximal independent sets of the grap...
متن کاملParallel Algorithms for Finding Maximal k-Dependent Sets and Maximal f-Matchings
Let k be a positive integer, a subset Q of the set of vertices of a graph G is k-dependent in G if each vertex of Q has no more than k neighbours in Q. We present a parallel algorithm which computes a maximal k-dependent set in a graph on n nodes in time O(log 4 n) on an EREW PRAM with O(n 2) processors. In this way, we establish the membership of the problem of constructing a maximal k-depende...
متن کاملMaximal Independent Sets for the Pixel Expansion of Graph Access Structure
Abstract : A visual cryptography scheme based on a given graph G is a method to distribute a secret image among the vertices of G, the participants, so that a subset of participants can recover the secret image if they contain an edge of G, by stacking their shares, otherwise they can obtain no information regarding the secret image. In this paper a maximal independent sets of the graph G was ...
متن کاملSmall Maximal Independent Sets and Faster Exact Graph Coloring
We show that, for any n-vertex graph G and integer parameter k, there are at most 34k−n4n−3k maximal independent sets I ⊂ G with |I| ≤ k, and that all such sets can be listed in time O(34k−n4n−3k). These bounds are tight when n/4 ≤ k ≤ n/3. As a consequence, we show how to compute the exact chromatic number of a graph in time O((4/3 + 3/4)) ≈ 2.4150, improving a previous O((1 + 3)) ≈ 2.4422 alg...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Electronic Journal of Combinatorics
سال: 2020
ISSN: 1077-8926
DOI: 10.37236/8683